
Unix Beginners QuickSheet
Version: 0.10.0
Date: 2/23/7

This document is written for those who find themselves new to the Unix
command line (shell). Each Unix version has local variations in terms
of availible shells, commands, and directory layout. This is intended as
a general guide only, verify these commands exist and are compatible
by refering to your local man page.
Unix is a popular operating system that is built some of the most mature
developments in operating system design. Many of the basic concepts
that are used today (and are covered in this guide) were designed over
30 years ago. An knowledge investment in Unix skills is likely to be
a rewarding investment for a significant ammount of time. This gives
the Unix user the oppurtunity to develop a deeper and more profound
knowledge of their tool over the OS user who must re-learn the interface
every major release.

Definitions

alias A command that is really another command or series of com-
mands. The command ll is frequently an alias for ls -l.
Whenever you type an alias (such as ll) the shell substitutes
the actual command ls -l.

argument This is an additional parameter that follows the command
on the command line that tells the command how you expect it
to behave. The parameter -l to the command ls tells ls that
you want a long listing of directory items instead of the standard
shortend list that you would get using only ls by itself.

daemon This is a program that runs in the background and handles
tasks and requests made to the system. Names of daemon pro-
cesses frequently end in the letter “d” by convention. One ex-
ample of this is the httpd process that handles http requests.
(The httpd daemon is more comonly known as a web server.)

internal (command) Some commands are processed by the shell and
not by the local system. One such example is the cd command.
If cd were a binary it would launch in its own environment,
change the directory and exit back to the original environment
with the original directory. For this reason, commands that effect
the environment, must be internal to the shell. These are also
sometimes called builtins. These commands can be determined
with the type shell internal command.

link A link is a pointer to a file. It is frequently used to give a file
or directory multiple names. Links are either symbolic or hard.
Symbolic links are actually files that point to other files. Sym-
bolic links can refer to directories, work across filesystems, or
refer to files that currently do not exist. Hard links are when a
file has multiple different names. Use ln to create links.

pipe This is represented by the | character. When a pipe is placed be-
tween two commands it connects the output (stdout/stderr)of
the first command to the input (stdin) of the second command.
This is the primary method of creating larger functionality by
joining multiple smaller commands.

process A program that has been read from disk and is running is called
a process. Each process has a process identifier called a pid. A
list of processes and pids can be viewed with the ps command.

stderr Standard error. This is the stream of data that programs create
strictly for error messages. Frequently this is mixed with stdout
data and may seem identical. For most purposes stdout and
stedrr are identical, but the key difference is when used in long
connections of commands the stderr can be isolated and sent to
a different location if necessary. stderr is known as file descriptor
“2”.

stdin Standard in. This is the stream of data that a program recieves
from the command line. Not to be confused with command line
arguments that are specified when the program is run this is
data that is recieved from user input or other commands while
the program is running. Input can be sent from program to pro-
gram by piping it between the two using ones stdin and anothers
stdout.

stdout Standard out. This is the stream of data that (command line)
programs print to the user interface. This output can be cap-
tured via a pipe or a redirect and sent to another program or
file. stdout is know as file descriptor “1”.

environment This is the collection of variables and settings that a
program runs within. Each environment is inherited from the
process that started it. Changes in your environment (such as
setting a variable) may be inherited by processes you start, but
will not have an effect on processes that are allready running.
This is a key componet of a multi-user environment.

The shell
• The Unix shell is the primary method that users interact with the
system. It is the essence of the command line interface experience with
the system. In the context of this paper, the shell is the essence of the
Unix experience. It is responsible for interpreting user requests entered
on the command line and linking groups of commands together.
• The shell is the interactive interface to the system that is utilized
when running locally or when connecting remotely over a telnet or ssh
connection.
• The most common shells are bourne (sh), korn (ksh), C (csh), and
bourne-again (bash). This document deals primarily with bourne and
its descendents (ksh and bash).
• Unix is case sensitive. The file wfavorite.txt is not the same as WFa-
vorite.txt. Unix views these as two different items.

Shell shortcuts - file globbing
• File globbing allows you list multiple files by expressing all the files
as a pattern. The examples below use the echo to simply repeat the
expanded glob.
• The * character can match any number of characters. By itself the *
will match everything. The number of matches can be limited by using
other characters with it. The ? character matches any single character.
The ? by itself will match any single letter name.
Print all files in the current directory that end in txt
echo *txt
Print all files in the current directory that begin with “important”
echo important*
Print all files in the current directory that have four characters
echo ????
Print all files in the /usr/bin directory that begin with X
echo /usr/bin/X*

Shell advanced shortcuts
• shell history is the ability to call upon and reuse previously run
commands in the shell. The history can be viewed with the history
shell command, or can be reused with one of the command line key
sequences. The previous command is typically available by using the
up arrow key. If this does not work -p (emacs mode) or -k (vi
mode) will recall the previous command.
• Most shells allow for a concept called command completion. This is
often implemented as a (in bash shell), (korn emacs mode),

or \ (korn vi mode) key sequence. Simply type the first string
of characters in a filename and then hit the command completion
sequence, the shell will complete the file name from the possibilites it
finds.

Quirks of the shell
• When you type a command in Unix the shell will set about finding
it. If you do not specify a path (such as /usr/bin/ls) but instead call
the command without a path (such as ls) the shell is responsible for
finding it. To do this the shell uses a list of directories that it stores
in the $PATH variable. If the command you are trying to run is not in
these directories it will not be found, even if it is in the directory you
are in. (It is considered bad practice to put the current directory (a ’.’)
in your $PATH to change this behavior.)
• The shell has internal and external commands. Internal commands
are implemented by the shell itself. External commands are imple-
mented by other programs that exist as seperate programs (executa-
bles) on the system. Commands like ls are external. In the case of ls
this command tends to be in /bin/ls. The cd command is an internal
shell command that is not found in the system but is interpreted by
the shell itself as a request to change the current directory that it is
working in.
•When a shell starts a command the relationship is called parent-child.
The naming is appropriate because the children inherit the environ-
ment of the parent (shell). This means that any variables or settings
that were set in the shell environment become the settings for the child.
Changes made while in the child process do not change the environ-
ment of the parent. Variables that have been exported in the parent
are visible in the child. For this reason some programs will require that
a list of variables be set and exported prior to them running.
• When a command is run from the shell it runs in the foreground.
This means that all input and output are used for that command. If a
command is backgrounded it will run in the background and you can
continue to run additional commands in the foreground. A command
can be backgrounded by calling it followed with a & character. Com-
mands that require input should not be backgrounded.

Understanding file attributes
• All files belong to someone, and have descriptions of what kind of
files they are and how they can be used. This data is viewable with the
ls command. Below is a sample listing created by running ls -l:
-rw-rw-r-- 1 wfavorite devlopers 62896 Oct 4 08:26 hw.c
-rwxrwxr-x 1 wfavorite devlopers 4679 Oct 16 08:21 hw
drwxrwxr-x 11 wfavorite devlopers 4096 Oct 15 08:15 work
From this we can determine that hw.c:
-rw-rw-r-- is a file
-rw-rw-r-- the owner can read, write, but not execute it
-rw-rw-r-- the group can read, write, but not execute it
-rw-rw-r-- all others can only read it

hw:
-rwxrwxr-x is also a file
-rwxrwxr-x both the user and group have read, write and execute
-rwxrwxr-x others can only read, and execute it

work:
drwxrwxr-x is a directory
drwxrwxr-x shares the same permisssions as hw. Because a directory

cannot be executed the execute permission means that
users can enter the directory and view its contents.

All of the above entries:
are owned by user wfavorite and group devlopers.
• File permissions are modified using the chmod command
• File ownership is modified using the chown and chrgp commands

Useful Unix pointers
• Don’t use spaces or strange characters in filenames. Because you
have to refer to files on the command line it is best to not use spaces in
the file name. If you do use spaces it will be necessary to “quote” the
name so that it does not appear as two different files when specified on
the command line.

Commands (grouped by task)
Commands to modify file attributes
chmod chown
Commands to show info about files
file ls
Move, copy, or rename files
mv cp ln cpio
Show contents of a text file
more cat head tail
Show what processes are running on a system
ps top

Remote access
• Remote access to Unix systems is typically gained in one of the fol-
lowing ways: remote shell, file transfer, application access, or remote
console / X.
• Remote shell is achived primarily by telnet or now, using the more
secure method, ssh.
• Files are transfered individually by using ftp and rcp or the secure
equivelants sftp and scp.

Commands listed with examples
cat concatenate and print files
Dump /etc/hosts file to stdout
cat /etc/hosts
Write everything typed (until -d is entered) to the file “newfile”
cat >> newfile

cd Change (working) directories
Change to the /usr/bin directory
cd /usr/bin
Change to your home directory
cd
Change back to the directory you were previously in
cd -

cp Copy a file or directory
Copy “myfile” to “myfile.backup”
cp myfile myfile.backup
Copy the directory “mydir” to “mydir.backup”
cp -r mydir mydir.backup

cpio Copy a file or directory
Note: Options to copi vary by system, check your local options.
Copy “sourcedir” to “destdir”
cd sourcedir; find . -print -depth | cpio -pdm destdir

date Print the current date and time
exit Log out from the current session

-d also works for this purpose
file Determine what kind of file a target is

Determine what kind of file “myfile” is
file myfile
Determine what kind of file the (special) file “/dev/zero” is
file /dev/zero

find Locate a file in the system
Find a file “myfile” in your home directory, print all matching names
find ~/ -name myfile -print

grep Search through the contents of a file (or stream) for a pattern
Look for a line with the word needle in the file called haystack.txt
grep needle haystack.txt
Look for a line that contains only needle in haystack.txt
grep "^needle$" haystack.txt
Look for the string “emacs” (a running process) in the output of ps
ps | grep emacs

head Print the first part of a file
Print the first (by default) 10 lines of “myfile.txt”
head myfile.txt

id Display current user and group membership
ls List all files in a directory

List file names

ls
List names and attributes of files
ls -l

man View the online manual
View the manual page for the ls command
man ls

mkdir Create a directory
Create a directory called mydir in the current working directory
mkdir mydir

more List the contents of a file (or stream of data) a bit at a time
Display the contents of a file called “largefile”
more largefile
Display the results of the ps command a page at a time
ps | more

mv Move a file to a new location or name
Move “myfile” into the directory called “mydir”
mv myfile mydir
Rename “myfile” to “ourfile”
mv myfile ourfile

passwd Change your password on the system
ps List running proceses

List processes that you have running
ps
List processes that belong to all users
ps ax (for OS X) ps -ef (for Linux, Solaris)

pwd Print the current working directory
rm Remove a file or directory

Remove a file called “myfile”
rm myfile
Remove a direcotry called “mydir”
rm -r mydir

su Become another user
Simply become the user fred (gain fred’s permissions)
su fred
Become the user fred and run the login profile for that user
su - fred
Become the root user and run the profile (user environment) for root
su -

sudo Run a command as another user (typically root)
Edit the system hosts file
sudo vi /etc/hosts
Run the id command as root (worthless, but demonstrates sudo)
sudo id

tail Print the last part of a file
Print the last (by default) 10 lines of “myfile.txt”
tail myfile.txt

top List the top (CPU) processes on a system
type Determine what a string / label is

Determine if cd is a binary, alias, or internal command.
type cd (cd is an internal command / shell builtin)

which Search your path for a binary
Show the full path to the ls command
which ls

Piping and redirection
• Piping is typically done between programs while redirection is typically
done to or from files. Some examples are listed here.
To pipe the stdout and stderr of ls to sort
ls | sort
Send the stdout of ls to sort and the stderr to the file /dev/null
ls 2> /dev/null | sort
Send both the stdout and stderr of ls to the file /dev/null
ls > /dev/null 2>&1
Overwrite the contents of file.txt with the output of ls
ls > file.txt
Append the output of ls to the end of file.txt
ls >> file.txt

Editors - Using vi
• More user friendly editors exist for Unix systems, but the vi editor
can be found on virtually every Unix system you may ever encounter.
• vi has a command mode and an insert mode. Command mode is for
telling vi things you want to do, such as open, save, edit a file, or quit.
Insert mode is when you are actually typing text into the file.
• Some essential command mode commands:

:w - Write the file
:q - Quit the editor
:q! - Quit the editor without saving changes you may have made
i - Begin inserting text where the cursor is in the file
x - Delete the character under the cursor
dd - Delete entire line
p - Paste previously deleted line

- (While in insert mode) will return you to command mode
• The commands for vi and other editors are very rich. The full set of
commands is beyond the scope of this QuickSheet.

Moving around the system - directories
Directories are delimited with a / character.
. referes to the current directory
.. refers to the parent directory
cd .. will move you to the parent directory
cd - will change to the previous directory
pwd will print the current directory

Troubleshooting
• What shell am I running?
echo $0 (echo $SHELL is not necessarily the one you are running)
• Why does my Backspace key print funny chars (like ^H)?
stty erase ^H (“stty erase ” then backspace key to define the
backspace key)
• Why does it say “file not found” when I run ./ls?
Because you said to run the copy of ls in the current directory and it
does not exist there. Try: ls (If it does not work, you most likely have
a problem with your PATH.
• Why can I only create a file 1 (or 2) gig in size?
Your account may have limits set. Check your ulimit for files using the
ulimit command.

Special files
• Some “files” on the system have special purposes. These files are
used by scripts and programs to generate or remove data. Some exam-
ples are:
/dev/null - Anything written to this file will disappear
/dev/zero - Anything read from this file will be all (binary) zeros
/dev/random - Anything read from this file will be random data

Additional help
Find all instances of “system” in the man files
whatis system -or- apropos system
Access the man(ual) page for the man browser
man man

About this QuickSheet
Created by: William Favorite (wfavorite@tablespace.net)
Updates at: http://www.tablespace.net
Disclaimer: This document is a guide and it includes no express war-
ranties to the suitability, relevance, or compatibility of its contents with
any specific system. Research any and all commands that you inflict
upon your command line.
Distribution: The PDF version is free to redistribute as long as credit
to the author and tablespace.net is retained in the printed and viewable
versions. LATEXsource not distributed at this time.

http://www.tablespace.net

